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Upper bounds and exact values on transposition

distance of permutations ∗

Lúıs Felipe Ignácio Cunha Luis Antonio B. Kowada

Abstract

One of the main operations of genome rearrangement is the transpo-
sition (exchange of contiguous blocks). Recently, the problem of com-
puting the minimum amount of operations of transpositions needed to
transform one sequence into another (transposition distance) between
two permutations was proved to be NP -hard [3]. The exact distance is
known for few cases. We show how to sort lonely permutations of the
family un,3 applying

⌊

n
2

⌋

+ 1 transpositions. Thus, if 4 divides n + 1

then the transposition distance is dt(un,3) =
⌊

n
2

⌋

+1, and if 4 does not

divide n+ 1, we have that
⌊

n
2

⌋

≤ dt(un,3) ≤
⌊

n
2

⌋

+ 1.

1 Introduction

The transposition is one of the main operations of genome rearrangement

that can be viewed as the swap of contiguous blocks. A possible biological

explanation for this rearrangement is the duplication of a block of genes,

followed by the deletion of the original block [2, 10].

Permutations can be joined into equivalence classes where for all ele-

ments in the same class the transposition distance are equal. However some

classes have just one permutation, so they are called unitary toric classes

and correspond to the lonely permutations, for more details see in [5, 7].

The problem of determining the transposition distance of permutations

is NP -hard [3] and there are no tight bounds for the distance. We combine
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the reality and desire diagram [1] and the unitary toric classes to obtain

tight bounds for the transposition distance of lonely permutations.

2 Preliminaries

Definition 2.1. [1] A transposition, denoted by t(i, j, k), where 1 ≤ i <
j < k ≤ n+ 1, is defined as the permutation

t(i, j, k) := [1 2 . . . i−1 j j+1 . . . k−1 i i+1 . . . j−1 k . . . n].

The transposition t(i, j, k) “cuts” the elements between the positions j
and k − 1 (both inclusive) and “pastes” them immediately before the i-th
position. The permutation π is a bijective function of n elements into these
n elements given by π = [π1π2 . . . πi−1πi . . . πj−1 πj . . . πk−1 πk . . . πn], then

π · t(i, j, k) = [π1π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1πk . . . πn].

Definition 2.2. [1, 8] The transposition distance dt(π) of a permutation

π is the length q of the shortest sequence of transpositions t1, t2,

. . . , tq, such that πt1t2 . . . tq = [1 2 . . . n]. If π = [1 2 . . . n], then dt(π) = 0.

In the study of determining the transposition distance, it is useful to give

special names and symbols for some permutations. These are: the identity

permutation of n elements, ι[n] := [1 2 . . . n]; the reverse permutation of

n elements, ρ[n] := [nn−1 . . . 2 1]; and the lonely permutation of n ele-

ments, un,ℓ := [ℓ 2ℓ 3ℓ . . . nℓ], such that gcd(n+1, ℓ) = 1 and x denotes the

remainder of the division of x by n+ 1.

Remark that ι[n] = un,1 and ρ[n] = un,n.

Definition 2.3. [1, 8] Given a permutation π of n elements, the Reality
and Desire Diagram is a graph on the following set of vertices:

V (RD(π)) := {0,−1,+1,−2,+2, · · · ,−n,+n,−(n+ 1)}.

and whose set of edges is partitioned into two sets R and D, respectively
reality and desire edges, defined as

R := {(+πi, −πi+1 |i = 1, · · · , n− 1} ∪ {(0, −π1), (+πn, −(n+ 1))},
D := {(+i, −(i+ 1) |i = 1, · · · , n− 1} ∪ {(0, −1), (+n, −(n+ 1))}.

We say that a cycle in a permutation π has length k if it has exactly k reality

edges (or k desire edges) in a cycle of RD(π).
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Definition 2.4. [4, 8] The reduced permutation of π, gl(π), is the per-

mutation whose reality and desire diagram RD(gl(π)) is equal to RD(π)

without the cycles of length 1, keeping the order of the elements.

Theorem 2.5. [1] A lower bound of transpositions distance is

dt(π) ≥

⌈

(n+ 1)− codd(π)

2

⌉

,

where codd(π) is the number of odd cycles in π.

Lemma 2.6. [8] Given a lonely permutation un,ℓ with ℓ > 1, the number

of cycles in RD(un,ℓ) is gcd(n + 1, ℓ− 1).

Corollary 2.7. [8] Given a lonely permutation un,ℓ with ℓ > 1, the length

of each cycle in RD(un,ℓ) is k = (n+1)
gcd(n+1,ℓ−1) .

Proposition 2.8. [7] If ℓ−1 is the multiplicative inverse of ℓ modulo (n+1),

then dt(un,ℓ) = dt(un,ℓ−1).

Proposition 2.9. If n = 3q, then 2q+ 1 ≡ 3−1 (mod n+1) and if n = 3q+1,

then q + 1 ≡ 3−1 (mod n+ 1).

Proof. The hypothesis n = 3q implies the computation of the inverse as
follows:

3(2q + 1) = 2(3q + 1) + 1 ≡ 1 (mod n+ 1).

Now, the hypothesis n = 3q + 1 implies:

3(q + 1) = 3q + 1 + 2 = n+ 2 ≡ 1 (mod n+ 1).

Definition 2.10. [6] The concatenation of the sequence a with the se-

quence b, denoted by a ⊙ b, is the operation that joins both sequences. The

generalized concatenation is denoted by
⊙z

i=j f(i) and is defined by the con-

catenation of the sequences f(i), with i ranging from j to z.

Example 1. The lonely permutation un,ℓ can be described as the following
concatenation:

un,ℓ =
n

⊙

i=1

[iℓ] = [ℓ 2ℓ 3ℓ . . . nℓ].
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3 Upper bounds and exact values on transposition

distance of lonely permutation un,3

Theorem 3.1 shows a tight bound on the transposition distance for a family

of lonely permutations.

Theorem 3.1. In a lonely permutation un,3 if 4 divides n + 1, dt(un,3) =
⌊

n
2

⌋

+ 1 and, if 4 does not divide n+ 1,
⌊

n
2

⌋

≤ dt(un,3) ≤
⌊

n
2

⌋

+ 1.

Proof. Let n = 3q. So dt(un,3) = dt(un,2q+1). Let π(0) = un,2q+1, thus

π(0) =

q−1
⊙

i=0

[(2q + 1 + i) (q + 1 + i) (i + 1 )].

The transpositions to apply are ti(i, 3i, 3i + 2) with i = 1, 2, · · · , q − 1.
After k transpositions, where 1 ≤ k ≤ q − 1, the permutation is:

π(k) =
k

⊙

i=1

[i]⊙
k

⊙

i=0

[2q+k+1− i]⊙

k+1
⊙

i=1

[q+ i]⊙ [k+1]⊙

q−1
⊙

i=k+1

[(2q+1+ i) (q+1+ i) (i+1)].

The proof of the last expression, π(k), is by induction. When k = 1,
observe that the transposition t1(1, 3, 5) over π(0) moves the elements 1 and
(2q + 2) to the beginning of the permutation, thus:

π(1) =

1
⊙

i=1

[i]⊙

1
⊙

i=0

[2q + 2− i]⊙

2
⊙

i=1

[q + i]⊙ [2]⊙

q−1
⊙

i=2

[(2q + 1 + i) (q + 1 + i) (i+ 1)].

Suppose after k − 1 transpositions that the permutation is:

π(k − 1) =

k−1
⊙

i=1

[i]⊙

k−1
⊙

i=0

[2q + k − i]⊙

k
⊙

i=1

[q + i]⊙ [k]⊙

q−1
⊙

i=k

[(2q + 1+ i) (q + 1 + i) (i+ 1)].

Now applying the transposition tk(k, 3k, 3k + 2) over π(k − 1), observe

that the elements k and (2q + k + 1) moves into the elements (k − 1) and

(2q + k):

π(k) =

k−1
⊙

i=1

[i]⊙ [k (2q + k + 1)]⊙

k−1
⊙

i=0

[2q + k − i]⊙

k
⊙

i=1

[q + i]⊙ [k + 1]

⊙

q−1
⊙

i=k+1

[(2q + 1 + i) (q + 1 + i) (i+ 1)].
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And this permutation can be rewritten as:

π(k) =
k

⊙

i=1

[i]⊙
k

⊙

i=0

[2q+k+1− i]⊙
k+1
⊙

i=1

[q+ i]⊙ [k+1]⊙

q−1
⊙

i=k+1

[(2q+1+ i) (q+1+ i) (i+1)].

Remark that as we said 1 ≤ k ≤ q−1, these transpositions are valid while
the last generalized concatenation exists, i.e, if k > q − 1 there is not the
concatenation ranging from k+1 to q−1. Thus, after q−1 transpositions:

π(q − 1) =

q−1
⊙

i=1

[i]⊙

q−1
⊙

i=0

[3q − i]⊙

q
⊙

i=1

[q + i]⊙ [q].

The (q−1) initial elements are ordered the way we want as in the identity,

the elements from 2q to (3q− 1) are in the reversal way and from (q+1) to

2q are ordered equal the identity but not in the position we intend.

Now, observe that ρ[q+2] = gl(π(q − 1)). As dt(ρ[q+2]) =
⌊

q+2
2

⌋

+ 1 [9],

in total we applied (q − 1) +
⌊

q+2
2

⌋

+ 1 =
⌊

n
2

⌋

+ 1 transpositions.

Let n = 3q + 1. So dt(un,3) = dt(un,q+1). Let π(0) = un,q+1, thus

π(0) =

q−1
⊙

i=0

[(q + 1 + i) (2q + 2 + i) (i+ 1)]⊙ [(2q + 1)].

The transpositions to apply are ti(i, 3i, 3i+2) with i = 1, 2, · · · , q. After
k transpositions, where 1 ≤ k ≤ q, the permutation is:

π(k) =
k

⊙

i=1

[i]⊙
k

⊙

i=0

[q + k + 1− i]⊙

k+2
⊙

i=2

[2q + i]⊙ [k + 1]

⊙

q−1
⊙

i=k+1

[(q + 1 + i) (2q + 2 + i) (i+ 1)]⊙ [2q + 1].

As in the preview case, the proof of the last expression is by induction.
When k = 1, observe that the transposition t1(1, 3, 5) over π(0) moves the
elements 1 and (q + 2) to the beginning of the permutation, thus:

π(1) =

1
⊙

i=1

[i]⊙

1
⊙

i=0

[q+2− i]⊙

3
⊙

i=2

[2q+ i]⊙ [2]⊙

q−1
⊙

i=2

[(q+1+ i) (2q+2+ i) (i+1)]⊙ [2q+1].

Suppose after k − 1 transpositions that the permutation is:

π(k−1) =

k−1
⊙

i=1

[i]⊙

k−1
⊙

i=0

[q+k−i]⊙

k+1
⊙

i=2

[2q+i]⊙[k]⊙

q−1
⊙

i=k

[(q+1+i) (2q+2+i) (i+1)]⊙[2q+1].
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Now applying the transposition tk(k, 3k, 3k + 2) over π(k − 1), observe
that the elements k and (q + k + 1) moves into the elements (k − 1) and
(q + k):

π(k) =
⊙k−1

i=1 [i]⊙ [k (q + k + 1)]⊙
⊙k−1

i=0 [q + k − i]⊙
⊙k+1

i=2 [2q + i]⊙

[(2q + k + 2) (k + 1)]⊙
⊙q−1

i=k+1[(q + 1 + i) (2q + 2 + i) (i+ 1)]⊙ [2q + 1].

And this permutation can be rewritten as:

π(k) =

k
⊙

i=1

[i]⊙

k
⊙

i=0

[q + k + 1− i]⊙

k+2
⊙

i=2

[2q + i]⊙ [k + 1]

⊙

q−1
⊙

i=k+1

[(q + 1 + i) (2q + 2 + i) (i+ 1)]⊙ [2q + 1].

Remark that as we said 1 ≤ k ≤ q, these transpositions are valid while
the last generalized concatenation exists, i.e, if k > q there is not the con-
catenation ranging from k + 1 to q − 1. Thus, after q transpositions:

π(q) =

q
⊙

i=1

[i]⊙

q−1
⊙

i=−1

[2q − i]⊙

q+1
⊙

i=2

[2q + i].

The q initial elements are ordered the way we want as in the identity, the

elements from (q + 1) to (2q + 1) are in the reversal way and from (2q + 2)

to (3q+1) are ordered equal the identity but not in the position we intend.

Now, observe that ρ[q+1] = gl(π(q)). As dt(ρ[q+1]) =
⌊

q+1
2

⌋

+ 1 [9], in

total we applied q +
⌊

q+1
2

⌋

+ 1 =
⌊

n
2

⌋

+ 1 transpositions.

Let n = 3q + 2. In this case does not exist lonely permutation because

gcd(n + 1, 3) = 3 6= 1.

Until here, we observe the possibility to order un,3 applying
⌊

n
2

⌋

+1 trans-

positions. Now, we will show when it is the exact value of the transposition

distance and when is not.

• Suppose that 4 divides (n+ 1).

By corollary 2.7, the length of each cycle is even, n+1
2 . So by the theorem

2.5, dt(π) ≥ (n+1)
2

=
⌊

n
2

⌋

+ 1.
As we ordered applying

⌊

n
2

⌋

+1 transpositions, we proved that the exact
transposition distance is

dt(un,3) =
⌊n

2

⌋

+ 1.
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• Suppose that 4 does not divide (n+ 1).

When n is even: In this case there exists one cycle and this is an odd cycle,

by lemma 2.6 and corollary 2.7. So, dt(π) ≥
⌈

(n+1)−codd(π)
2

⌉

= n
2
.

When n is odd: In this case there exist two cycles, gcd(n + 1, 2) = 2, and

these are odd cycles (4 does not divide (n + 1)). So dt(π) ≥
⌈

(n+1)−codd(π)
2

⌉

=

n−1
2

=
⌊

n
2

⌋

.

As we ordered applying
⌊

n
2

⌋

+ 1 transpositions we conclude:
⌊n

2

⌋

≤ dt(un,3) ≤
⌊n

2

⌋

+ 1.

4 Conclusion and future work

Table 1 shows the known results about the exact values on transposition

distance for lonely permutations un,ℓ. In these cases, we have the exact

transposition distance, besides the un,ℓ−1 , given by proposition 2.8. In this

work, we have shown how to sort lonely permutations un,3, giving the exact

transposition distance for some cases and upper bounds for other cases.

A table in [8] is given with the exact values of transposition distance for

n, ℓ ≤ 18. The present work agrees with those exact values, when 4 divides

n + 1. For the case 4 does not divide n + 1, the present work agrees with

some exact values and gives the upper bound of
⌊

n
2

⌋

+1 for the other cases.

We intend to investigate other families of lonely permutations, in order to

obtain additional exact values for the transposition distance.

n ℓ dt(un,ℓ) Ref. Year n ℓ dt(un,ℓ) Ref. Year

q q
⌊

q

2

⌋

+ 1 [9] 1997 4q − 1 2q + 1 2q [4] 1999
6q 2q + 1 3q + 1 [4] 1999 2q 2 q [8] 2010
6q − 2 4q 3q [4] 1999 4q − 1, q > 1 3 2q + 1 * 2011

Table 1: Exact values known for the transposition distance of lonely permu-
tations. The ∗ means contribution of the present work.
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lfignaciocunha@id.uff.br, luis@vm.uff.br


