
Matemática Contemporânea, Vol 39, 69-76

c©2010, Sociedade Brasileira de Matemática

Decomposition by maxclique separators

Márcia R. Cerioli∗ Hugo Nobrega† Petrucio Viana‡

Abstract

We provide a minimal counterexample to the correctness of an al-
gorithm proposed by R. Tarjan for decomposing a graph by maximal
clique separators. We also suggest a modification to that algorithm
which not only corrects it but also retains its O(nm) time complexity.

1 Introduction

Procedures for decomposing graphs into smaller pieces often play a central

role in graph theory. Particularly, a type of graph decomposition which

has found many interesting applications is that of decomposition by clique

separators. In [5], R. Tarjan proposed an O(nm) algorithm that decomposes

a graph by clique separators, and showed how these decompositions can be

used to efficiently solve many classical problems such as vertex coloring,

maximum independent set, among others, in some graph classes.

Tarjan added a note at the end of his paper proposing a simple modifica-

tion of his algorithm to find a decomposition by maximal clique (maxclique)

separators, and claimed this modified algorithm retained the same time com-

plexity. This algorithm has been used, for example, to recognize some classes

of path graphs [2, 4].

2000 AMS Subject Classification. 68R10, 05C75, 05C85.
Key Words and Phrases. graph decomposition, clique separator, maximal clique, al-

gorithm.
∗Research supported in part by CAPES, CNPq, and FAPERJ.
†Research supported by FAPERJ (Bolsa Nota 10).
‡Research supported in part by CNPq and FAPERJ.

70 M. R. Cerioli, H. Nobrega and P. Viana

In this work, we provide a (minimal) counterexample to the correctness

of the maxclique decomposition algorithm specified in [5], and propose a

modification to it in order to obtain a correct algorithm which retains the

O(nm) complexity.

2 Definitions and preliminary results

Definitions and notations not specified here are standard and can be found

in [1].

An elimination ordering of G is a total ordering of V (G). For ease of

notation, we shall in general also treat an elimination ordering as a bijection

between V (G) and {1, . . . , n}. Given an elimination ordering π of G, we say

u, v ∈ V (G) are fillable w.r.t. π if they are nonadjacent and there exists a

path P = u, x1, . . . , xk, v in G such that

π(xi) < min{π(u), π(v)}

for all i ∈ {1, . . . , k}. The set Fπ of fill-in edges created by π is the set of all

fillable pairs of vertices of G. A minimal elimination ordering (m.e.o.) of G

is an elimination ordering π such that there is no other elimination ordering

π′ of G such that Fπ′ ⊂ Fπ.

For an example of these concepts, see Figure 1. Note that the ordering

presented in Figure 1(b) is not minimal.

Finding an elimination ordering with minimal (w.r.t. inclusion) set of

fill-in edges can be done in O(nm) time by a variation of lexicographic

breadth-first search which is due to Rose, Tarjan, and Lueker [3]. This

contrasts with the fact that the problem of finding an elimination ordering

with minimum (w.r.t. cardinality) set of fill-in edges is NP-hard (Yannakakis

1981, cf. [5]).

Given an elimination ordering π and a vertex v of G, we define

Cπ(v) = {u ∈ V : π(u) > π(v) and uv ∈ E ∪ Fπ}.

Note that, once Fπ is known, determining Cπ(v) for all v can be done

in O(m + |Fπ|) = O(nm) time since, for each uv ∈ E ∪ Fπ, exactly one of

Decomposition by maxclique separators 71

(a)

(b) (c)

Figure 1: A graph (a) and two elimination orderings (b–c), along with the
fill-in edges they create (represented by dashed lines).

v ∈ Cπ(u) or u ∈ Cπ(v) is true, so that a simple traversal of the set E ∪ Fπ
is enough to determine all of these sets.

We are now ready to specify Tarjan’s clique decomposition algorithm

(Algorithm 1 below), which uses those sets Cπ(v) that are cliques to separate

a given graph.

Algorithm 1: Tarjan’s clique decomposition algorithm

Input: A graph G.
Output: A decomposition of G by clique separators, if one exists.
Compute an m.e.o. π of G ;
foreach v ∈ V do compute Cπ(v) ;
foreach v ∈ V in increasing order w.r.t. π do

if Cπ(v) is a separating clique of G then
A(v)← the vertex set of the conn. comp. of GrCπ(v)
containing v;

G1 ← G[A(v) ∪ Cπ(v)];
G2 ← GrA(v);
G← G2

 “decomposition step”

72 M. R. Cerioli, H. Nobrega and P. Viana

Since each decomposition step can be performed in O(m) time with,

say, a breadth-first search, and since at most n− 1 decomposition steps can

separate G, the total running time of Algorithm 1 is O(nm).

In order to obtain an algorithm that performed decomposition by max-

clique separators, Tarjan proposed some modifications to Algorithm 1, re-

sulting in Algorithm 2 below.

Algorithm 2: Tarjan’s proposed maxclique decomposition algorithm

Input: A graph G.
Output: A decomposition of G by maxclique separators, if one exists.
Compute an m.e.o. π of G ;
foreach v ∈ V do compute Cπ(v) ;
foreach v ∈ V in increasing order w.r.t. π do

if Cπ(v) is a separating clique of G then
A(v)← the vertex set of the conn. comp. of GrCπ(v)
containing v ;
B(v)← V r(A(v) ∪ Cπ(v)) ;
if S = Cπ(v) ∪ {v} is a maxclique of G and A(v) 6= {v}, or
∃B′ ⊂ B(v) s.t. S = Cπ(v) ∪B′ is a maxclique of G then

G1 ← G[A(v) ∪ S];
G2 ← G[B(v) ∪ S];
G← G2;

 “decomposition step”

Unfortunately, Algorithm 2 is not correct. For a (minimal) counterexam-

ple, consider elimination ordering (c) of the graph of Figure 1. Note that

since that graph is not chordal and only one fill-in edge is created, the orde-

ring is minimal (indeed, it is minimum). We have Cπ(1) = Cπ(2) = {3, 4},
Cπ(3) = {4}, Cπ(4) = {5}, and Cπ(5) = ∅. Therefore, even though G has

two separating maxcliques, namely {1, 4} and {2, 4}, none of these is found

by the algorithm.

Decomposition by maxclique separators 73

3 A new algorithm

Algorithm 3: Decomposition by Maxclique Separators, DMS

Input: A graph G.
Output: A decomposition of G by maxclique separators, if one exists.
Compute an m.e.o. π of G ;
foreach v ∈ V do compute Cπ(v) ;
foreach v ∈ V in increasing order w.r.t. π do

if Cπ(v) is a separating clique of G then
A(v)← the vertex set of the conn. comp. of GrCπ(v) containing v ;
B(v)← V r(A(v) ∪ Cπ(v)) ;
if ∃A′ ⊂ A(v) s.t. Cπ(v) ∪A′ is a maxclique of G and A′ 6= ∅ then

G1 ← G[A(v) ∪ (Cπ(v) ∪A′)];
G2 ← G[B(v) ∪ (Cπ(v) ∪A′)];
G← G2;

 “type (i) decomposition step”

else if ∃B′ ⊂ B(v) s.t. Cπ(v) ∪B′ is a maxclique of G then
G1 ← G[A(v) ∪ (Cπ(v) ∪B′)];
G2 ← G[B(v) ∪ (Cπ(v) ∪B′)];
G← G2;

“type (ii) decomposition step”

Theorem 3.1. Algorithm DMS has O(nm) time complexity.

Sketch of proof. For each v ∈ V , testing whether Cπ(v) is a separating

clique of G can be done in O(m) time with, say, a breadth-first search.

Computing A′ and B′, as defined in the algorithm, takes O(m) time using

a simple greedy procedure. Since this process is done at most O(n) times,

the total complexity is O(nm). �

The proof of correctness of Algorithm DMS is largely based on the fol-

lowing.

Lemma 3.2 (Central Lemma). Let C be a minimal separating clique of G,

let Vi be the vertex set of a connected component of GrC, and let vi be the

maximum vertex of Vi w.r.t. π. If vi is not the maximum vertex of GrC,

then

Cπ(vi) = C.

74 M. R. Cerioli, H. Nobrega and P. Viana

The proof of this result is similar to the one found in [5], and is omitted.

Theorem 3.3 (Correctness, part 1). If G has a maxclique separator, then

for any minimal ordering π of G, some decomposition step of an execution

of Algorithm DMS separates G.

Sketch of proof. Let S be a separating maxclique of G, and let S′ ⊆ S

be a minimal separating clique of G. By the Central Lemma, there exists

at least one vertex v of G such that Cπ(v) = S′. Using the notation of

Algorithm DMS, if SrS′ ⊂ A(v), then in the worst case a decomposition

step of type (i) at v occurs. If SrS′ = A(v), then GrS′ has at least three

connected components since S separates G. Hence, again by the Central

Lemma, there exists a vertex u ∈ B(v) such that Cπ(u) = S′, so that in

the worst case a decomposition step of type (ii) at u occurs. Otherwise, if

SrS′ ⊆ B(v), then in the worst case a decomposition step of type (ii) at v

occurs. �

Note that Algorithm DMS works at each step by decomposing G into

two parts, and then discarding one of them. Therefore, it is necessary to

prove that the discarded part contains no maxclique separators.

Lemma 3.4. If Cπ(v) separates G, then v is the maximum vertex of A(v)

w.r.t. π.

Sketch of proof. Suppose, for a contradiction, that there exists w ∈ A(v)

s.t. π(w) > π(v). If v and w are adjacent, then w ∈ Cπ(v), a contradiction

since by definition A(v)∩Cπ(v) = ∅. Otherwise, by induction on the distance

between v and w, it can be shown that v, w are fillable, which also implies

w ∈ Cπ(v), a contradiction. �

Theorem 3.5 (Correctness, part 2). For any graph G and any minimal

ordering π of G, each decomposition step of Algorithm DMS creates at least

one atom.

Sketch of proof. We prove by induction on k that if an execution of Al-

gorithm DMS on a graph G with ordering π has k decomposition steps,

Decomposition by maxclique separators 75

then each one creates an atom. If k = 0 then the result follows vacuously.

Consider an execution that has k decomposition steps, the first of which

happens at vertex v and separates G into G1 and G2.

After this decomposition step, the execution proceeds in exactly the same

way as a fresh execution on G2 with the appropriate ordering, so that by

the induction hypothesis each of the decomposition steps following the one

at v creates at least one atom.

Therefore, all that is left to prove is that G1 is an atom. Let M be

the first separating maxclique of G which was found by the algorithm (i.e.,

M = Cπ(v) ∪ A′ if the step was type (i), and M = Cπ(v) ∪ B′ if the step

was type (ii)), and let π1 be the restriction of π to the vertices of G1.

It is easy to see that Cπ1(x) = Cπ(x) for all x ∈ A(v).

Now suppose for a contradiction that G1 has a separating maxclique

S and let S′ ⊆ S be a minimal separating clique of G1. At most one

connected component of G1 rS′ can contain vertices of M , since it is a

clique, and therefore, since by Lemma 3.4 all vertices of A(v) come before all

vertices of Cπ(v) in π1, it follows by the Central Lemma that S′ = Cπ1(x) for

some x ∈ A(v). Furthermore, since Cπ1(v) does not separate G1, it follows

that x 6= v, and therefore by Lemma 3.4 we have that π1(x) < π1(v), a

contradiction since in this case some decomposition step of Algorithm DMS

on G would have occurred at a vertex before v. �

Acknowledgements

The authors would like to thank one of the anonymous referees for the

comments and suggestions which improved the presentation of this extended

abstract.

76 M. R. Cerioli, H. Nobrega and P. Viana

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2007.

[2] C. L. Monma and V. K. Wei. Intersection graphs of paths in a tree.

Journal of Combinatorial Theory, Series B, 41(2):141 – 181, 1986.

[3] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex

elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

[4] J. P. Spinrad. Efficient Graph Representations. American Mathematical

Society, Providence, RI, USA, 2003.

[5] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics,

55(2):221 – 232, 1985.

Márcia R. Cerioli

Instituto de Matemática e COPPE/Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro

Caixa Postal 68511, 21941-972, Rio de Janeiro, Brazil.

Hugo Nobrega

COPPE/Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro

Caixa Postal 68511, 21941-972, Rio de Janeiro, Brazil.

Petrucio Viana

Instituto de Matemática e Estat́ıstica

Universidade Federal Fluminense

Rua Mário Santos Braga s/no, 24020-140, Niterói, Brazil.

Email addresses: {cerioli, hugonobrega, petrucio}@cos.ufrj.br

