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Abstract

Starting from early results of Biagioni on semilinear hyperbolic equa-

tions we investigate solutions to the one-dimensional semilinear wave

equation with generalized function data and singular potential in the

Colombeau algebra of generalized functions. We prove an existence-

uniqueness result, compute the associated distribution for a delta func-

tion potential in the nonlinear case and develop concepts of regularity of

generalized solutions applicable in a nonlinear setting.

1 Introduction

In one of her early papers [2] on Colombeau theory, Biagioni proved that the

initial value problem for a hyperbolic (n× n)-system in one space variable

∂tui + λi(x, t)ui = fi(x, t, u1, . . . , un), 1 ≤ i ≤ n (1)

with initial data belonging to the Colombeau algebra G(I) on an interval I ⊂ R

has a unique generalized solution in the sense of Colombeau on the correspond-

ing domain of determinacy and that the solution depends continuously on the

data. In this paper, Biagioni assumed that the coefficients λi are smooth and

real valued and that the functions fi are smooth, of polynomial growth and
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with all derivatives with respect to the variables ui bounded. She also showed

that the generalized solution is associated with the classical solution in case the

initial data are continuously differentiable functions. This result, taken up in

her monograph [3], was one of the early results establishing Colombeau theory

as a tool for treating nonlinear partial differential equations with non-smooth

data for which the classical theory would not provide any solution concept. It

exhibits the main type of questions that have been posed and answered for a

wealth of linear and nonlinear partial differential equations in the decades to

follow:

(a) Existence and uniqueness of generalized solutions in Colombeau algebras;

(b) limiting behavior of the representatives when the data are distributions;

(c) regularity of generalized solutions.

Biagioni pursued this line of research for various classes of partial differen-

tial equations [5, 6, 7, 8, 9]. Concerning question (a), a short survey of later

existence and uniqueness results can be found in [31]. For linear systems of

type (1), existence and uniqueness was established for non-smooth (Colombeau

generalized) coefficients λi in [28], for symmetric hyperbolic systems in higher

space dimensions in [23] and for hyperbolic pseudodifferential systems with

Colombeau symbols in [18]. Notably for semilinear hyperbolic systems as (1),

question (b) has been answered in many cases, involving the notion of delta-

waves [12, 16, 26, 29, 35, 36, 38]. Finally, regularity theory for Colombeau

solutions is now based on the subalgebra G∞ of regular Colombeau functions

and currently an active area of research, making use of pseudodifferential and

microlocal techniques [13, 14, 20, 24]. In particular, the propagation of the

G∞-wave front set in linear systems of type (1) with Colombeau coefficients

is a theme of recent investigations [15]. To date, very little is known about

regularity of Colombeau solutions in the nonlinear case.

The purpose of this note is to demonstrate recent methods for treating

questions (a) - (c) in the case of a model equation, the semilinear wave equation
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with singular potential as well as singular driving term and initial data

∂2
t u(x, t) − ∂2

xu(x, t) = f(u(x, t))g(x) + h(x, t), x ∈ R, t > 0,
u(x, 0) = a(x), ∂tu(x, 0) = b(x), x ∈ R,

(2)

where f is a smooth, polynomially bounded function and a, b, g and h are

Colombeau generalized functions on the real line and on the upper half plane,

respectively. After recalling the required notions from Colombeau theory in

Section 2, we shall prove existence and uniqueness of a solution u belonging

to the Colombeau algebra on the upper half plane in Section 3. Section 4 is

devoted to computing the associated distribution (the distributional limit of

the representing nets) when the potential g is a delta function. Both the exis-

tence and uniqueness result and the limiting result is new in case of a singular

potential. In Section 5 we turn to regularity theory. We briefly recall the G∞-

regularity result for the linear case, show that it fails in the nonlinear case and

finally prove a regularity result using so-called slow scale generalized functions

in the nonlinear case. This result is new and based on the notion of a slow scale

net which has been introduced in [14, 21] and has turned out to be central to

regularity theory in the Colombeau setting.

For simplicity of presentation, we restrict our attention to the one-dimensional

case and Lipschitz-continuous nonlinearity f . At the appropriate places of the

paper, we will indicate what is known about the non-Lipschitz and the higher

dimensional case. With Lipschitz-continuous f , in particular, the solution to (2)

exists globally in space and time. Therefore, we need not enter the discussion

of domains of existence. This latter question of the existence of local solutions

is difficult to handle in the Colombeau setting, due to the fact that the time of

existence may shrink to zero as the regularization parameter approaches zero.

This led Biagioni to introduce the notion of a germ of generalized functions in

[4], where she successfully solved nonlinear first order partial differential equa-

tions in an algebra of germs. This pioneering work awaits to be taken up and

continued.

The results of this paper were first presented in the Winter School on Non-

linear PDEs with Singularities and Applications organized by Stevan Pilipović
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at the University of Novi Sad in February 2003.

2 Notation

The paper is placed in the framework of algebras of generalized functions in-

troduced by Colombeau in [10, 11]. We shall fix the notation and introduce a

number of known as well as new classes of generalized functions here. For more

details, see [17].

Let Ω be an open subset of R
n. The basic objects of the theory as we use it

are families (uε)ε∈(0,1] of smooth functions uε ∈ C∞(Ω) for 0 < ε ≤ 1. We single

out the following subalgebras:

Moderate families, denoted by EM(Ω), are defined by the property:

∀K b Ω ∀α ∈ N
n
0 ∃p ≥ 0 : sup

x∈K

|∂αuε(x)| = O(ε−p) as ε→ 0. (3)

Null families, denoted by N (Ω), are defined by the property:

∀K b Ω ∀α ∈ N
n
0 ∀q ≥ 0 : sup

x∈K

|∂αuε(x)| = O(εq) as ε→ 0. (4)

Thus moderate families satisfy a locally uniform polynomial estimate as ε→ 0,

together with all derivatives, while null functionals vanish faster than any power

of ε in the same situation. The null families form a differential ideal in the

collection of moderate families. The Colombeau algebra is the factor algebra

G(Ω) = EM(Ω)/N (Ω).

The algebra G(Ω) just defined coincides with the special Colombeau algebra in

[17, Def. 1.2.2], where the notation Gs(Ω) has been employed. It was called the

simplified Colombeau algebra in [3].

The Colombeau algebra on a closed half space R
n × [0,∞) is defined in a

similar way. The restriction of an element u ∈ G(Rn×[0,∞)) to the line {t = 0}

is defined on representatives by

u|{t=0} = class of (uε(·, 0))ε∈(0,1].
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Similarly, restrictions of the elements of G(Ω) to open subsets of Ω are defined

on representatives. One can see that Ω → G(Ω) is a sheaf of differential algebras

on R
n. The space of compactly supported distributions is imbedded in G(Ω) by

convolution:

ι : E ′(Ω) → G(Ω), ι(w) = class of (w ∗ (ϕε)|Ω)ε∈(0,1], (5)

where

ϕε(x) = ε−nϕ (x/ε) (6)

is obtained by scaling a fixed test function ϕ ∈ S(Rn) of integral one with all

moments vanishing. By the sheaf property, this can be extended in a unique

way to an imbedding of the space of distributions D′(Ω).

One of the main features of the Colombeau construction is the fact that

this imbedding renders C∞(Ω) a faithful subalgebra. In fact, given f ∈ C∞(Ω),

one can define a corresponding element of G(Ω) by the constant imbedding

σ(f) = class of [(ε, x) → f(x)]. Then the important equality ι(f) = σ(f) holds

in G(Ω).

If u ∈ G(Ω) and f is a smooth function which is of at most polynomial

growth at infinity, together with all its derivatives, the superposition f(u) is a

well-defined element of G(Ω).

We need a couple of further notions from the theory of Colombeau general-

ized functions. An element u of G(Ω) is called of local Lp-type (1 ≤ p ≤ ∞), if

it has a representative with the property

lim sup
ε→0

‖uε‖Lp(K) <∞

for every K b Ω.

Regularity theory is based on the subalgebra G∞(Ω) of regular generalized

functions in G(Ω). It is defined by those elements which have a representative

satisfying

∀K b Ω ∃p ≥ 0 ∀α ∈ N
n
0 : sup

x∈K

|∂αuε(x)| = O(ε−p) as ε→ 0. (7)
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Observe the change of quantifiers with respect to formula (3); locally, all deriv-

atives of a regular generalized function have the same order of growth in ε > 0.

One has that (see [30, Thm. 5.2])

G∞(Ω) ∩ D′(Ω) = C∞(Ω).

For the purpose of describing the regularity of Colombeau generalized functions,

G∞(Ω) plays the same role as C∞(Ω) does in the setting of distributions.

A net (rε)ε∈(0,1] of complex numbers is called a slow scale net if

|rε|
p = O(ε−1) as ε→ 0

for every p ≥ 0. We refer to [21] for a detailed discussion of slow scale nets.

Finally, an element u ∈ G(Ω) is called of total slow scale type, if for some

representative, ‖∂αuε‖L∞(K) forms a slow scale net for every K b Ω and α ∈ N
n
0 .

It is clear that every element u of G(Ω) which is of total slow scale type

belongs to G∞(Ω) (but not conversely). However, in the opposite direction

estimates on the zero-th derivatives suffice. More precisely, if u belongs to

G∞(Ω) and is of local L∞-type, then it is already of total slow scale type (see

[22]).

We end this section by recalling the association relation on the Colombeau

algebra G(Ω). It identifies elements of G(Ω) if they coincide in the weak

limit. That is, u, v ∈ G(Ω) are called associated, u ≈ v, if limε→0

∫ (

uε(x) −

vε(x)
)

ψ(x) dx = 0 for all test functions ψ ∈ D(Ω). We shall also say that u

is associated with a distribution w if uε → w in the sense of distributions as

ε→ 0.

3 Existence/uniqueness of generalized solutions

This section is devoted to solving the semilinear wave equation (2) in the

Colombeau algebra G(R × [0,∞)). Recall first that if w is a classical solution

of the linear wave equation

∂2
t w(x, t) − ∂2

xw(x, t) = h(x, t), x ∈ R, t > 0,
w(x, 0) = a(x), ∂tw(x, 0) = b(x), x ∈ R,

(8)
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then it solves the integral equation

w(x, t) =
1

2

(

a(x−t)+a(x+t)
)

+
1

2

∫ x+t

x−t

b(y)dy+
1

2

∫ t

0

∫ x+t−s

x−t+s

h(y, s)dyds. (9)

Let I0 = [−κ, κ] be a compact interval. For 0 ≤ t ≤ s ≤ κ, the interval It and

the trapezoidal region Ks are defined by

It = {x ∈ R : |x| ≤ κ− t},

Ks = {(x, t) ∈ R × [0,∞) : 0 ≤ t ≤ s, x ∈ It}.
(10)

Using (9), the following estimates are easily deduced (0 ≤ t ≤ T ≤ κ):

‖w‖L∞(KT ) ≤ ‖a‖L∞(I0) + T‖b‖L∞(I0) + T

∫ T

0

‖h‖L∞(Ks)ds, (11)

‖w(·, t)‖L∞(It) ≤ ‖a‖L∞(I0) + T‖b‖L∞(I0) +
1

2

∫ t

0

‖h(·, s)‖L1(Is)ds. (12)

We now turn to the semilinear wave equation (2). We assume throughout that

u→ f(u) is a smooth function all whose derivatives are of at most polynomial

growth as |u| → ∞, that f satisfies a global Lipschitz estimate (i.e., has a

bounded first derivative) and that f(0) = 0.

Proposition 1. Assume that the function f is as described above. Let a, b ∈

G(R), h ∈ G(R× [0,∞)) and let g ∈ G(R) be of local L1-type. Then problem (2)

has a unique solution u ∈ G(R × [0,∞)).

Proof: To prove the existence of a solution, take representatives aε, bε, gε, hε

of a, b, g, h, respectively, and let uε ∈ C∞(R × [0,∞)) be the unique solution to

the semilinear wave equation with regularized data:

∂2
t uε − ∂2

xuε = f(uε)gε + hε on R × [0,∞),
uε(·, 0) = aε, ∂tuε(·, 0) = bε on R.

(13)

The classical solution uε to (13) is constructed by rewriting (13) as an integral

equation and invoking a fixed point argument (this involves applying estimate

(11) successively to all derivatives). If we show that the net (uε)ε∈(0,1] belongs

to EM(R × [0,∞)), its equivalence class in G(R × [0,∞)) will be a solution. To



176 M. OBERGUGGENBERGER

show that the zero-th derivative of uε satisfies the estimate (3), we take a region

KT with its horizontal slices It and invoke inequality (12) to see that

‖uε(·, t)‖L∞(It) ≤ ‖aε‖L∞(I0) + T‖bε‖L∞(I0)

+
1

2

∫ t

0

‖f(uε(·, s))gε + hε(·, s)‖L1(Is)ds.
(14)

The last term on the right hand side of (14) is estimated by

1

2

∫ t

0

(

‖f ′‖L∞(R)‖(uε(·, s))‖L∞(Is)‖gε‖L1(Is) + 2s‖hε(·, s)‖L∞(Is)

)

ds. (15)

Using that g is of local L1-type and each of the terms involving aε, bε, hε is of

order O(ε−p) for some p, we infer from Gronwall’s inequality that the same is

true of ‖uε(·, t)‖L∞(It) for 0 ≤ t ≤ T . Thus uε is moderate on the region KT ,

that is, it satisfies the estimate (3) there. To get the estimates for the higher

order derivatives, one just differentiates the equation and employs the same

arguments inductively, using that the lower order terms are already known to

be moderate from the previous steps.

To prove uniqueness, we consider representatives uε, vε ∈ EM[R × [0,∞)) of

two solutions u and v. Their difference satisfies

∂2
t (uε − vε) − ∂2

x(uε − vε) = (f(uε) − f(vε)) gε + nε,
(uε(·, 0) − vε(·, 0)) = n0ε, ∂t(uε(·, 0) − vε(·, 0)) = n1ε

for certain null elements nε, n0ε, n1ε. Thus uε − vε satisfies an estimate of the

form (14), but with the null elements nε, n0ε, n1ε replacing aε, bε, hε there. This

implies as above that the L∞-norm of uε − vε on KT is of order O(εq) for every

q ≥ 0. By [17, Thm. 1.2.3], the null estimate (4) on uε − vε suffices to have null

estimates on all derivatives. Thus u = v in G(R × [0,∞)).

Remark 2. In case the data are continuous or smooth functions, the relation

of the generalized solution to the classical solution is as follows. Assume first

that a, b, g belong to C∞(R) and h to C∞(R × [0,∞)). Let w ∈ C∞(R × [0,∞))

be the classical solution. Then w coincides with the generalized solution u ∈

G(R × [0,∞)), that is, u = ι(w) in G(R × [0,∞)). This follows from the
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fact that the imbedding ι coincides with the constant imbedding σ on C∞(R),

so uε ≡ w is a representative of the generalized solution. Second, assume the

data a, b, g and h are continuous functions and let w ∈ C(R × [0,∞)) be the

corresponding continuous (weak) solution. Then the generalized solution u ∈

G(R × [0,∞)) is associated with w. This follows from the classical result of

continuous dependence of the continuous solution on the initial data. Third,

when the data are distributions, there may be no meaning for a distributional

solution, in general. Yet the solution in G(R × [0,∞)) may still be associated

with a distribution. Some incidents of such a situation will be described in

Section 4.

Proposition 1 is a model result. In fact, for the case without potential and

driving term (g ≡ 1, h ≡ 0), it is a special case of Biagioni’s paper [2] and of

[27]; for Lipschitz continuous, smooth f and g ≡ 1, existence and uniqueness

of a solution in G(Rn × [0,∞)) can be proven in space dimensions n = 1, 2, 3,

see e.g. [31]. If f is not Lipschitz, but of polynomial growth, energy estimates

can be used to construct solutions in the Colombeau algebra G2,2(R
n × [0,∞))

introduced in [9]. As in the classical case, the growth type of f is connected

with the space dimension; the cases 1 ≤ n ≤ 6 have been treated in [25]; for

n = 3 see also [11].

4 Singular potentials

In this section we investigate the behavior of the solution u ∈ G(R × [0,∞)) to

the semilinear wave equation (2) when the potential g is given by a measure.

As a model situation we consider a delta function potential, that is, a potential

given by ι(δ) where δ ∈ D′(R) is the Dirac measure. According to (5) and (6),

a representative of ι(δ) is given by the net (ϕε)ε∈(0,1]. Thus we consider the

problem
∂2

t u− ∂2
xu = f(u)ι(δ) on R × [0,∞),

u(·, 0) = ι(a), ∂tu(·, 0) = ι(b) on R.
(16)

We are not concerned with propagation of strong singularities from the initial

data, so we will assume that a and b belong Cb(R), the space of bounded and
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continuous functions. In this case, there is a solution concept for the corre-

sponding classical equation

∂2
t w − ∂2

xw = f(w)δ on R × [0,∞),
w(·, 0) = a, ∂tw(·, 0) = b on R

(17)

when w is a continuous function on R× [0,∞): the derivatives on the left hand

side may be interpreted in the weak sense, the product on the right hand side

as the multiplication of a continuous function and a measure. We are going to

show that equation (17) has a unique continuous weak solution w and that the

generalized solution u to (16) is associated with it. The assumptions on the

function f are the same as in Section 3.

The fundamental solution for the linear wave equation on R× [0,∞) is given

by

E(t, x) =
1

2
H(t− |x|)

where H denotes the Heaviside function. Fix T > 0 and some bounded and

continuous function φ on R × [0, T ]. The linear equation

∂2
t v − ∂2

xv = φδ on R × [0, T ],
v(·, 0) = 0, ∂tv(·, 0) = 0 on R

(18)

has the weak solution

v(x, t) =

(
∫ t

0

E(t− s, ·) ∗ φ(0, s)δds

)

(x)

=
1

2

∫ t

0

H(t− s− |x|)φ(0, s)ds

=
1

2
H(t− |x|)

(

H(−x)

∫ t+x

0

φ(0, s)ds+ H(x)

∫ t−x

0

φ(0, s)ds

)

=
1

2
H(t− |x|)

∫ t−|x|

0

φ(0, s)ds.

The explicit representation shows that v is continuous, its support intersected

with the strip R × [0, T ] is compact and the following estimate holds:

‖v‖L∞(R×[0,T ]) ≤ T‖φ‖L∞(R×[0,T ]).
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Lemma 3. Assume that f is a globally Lipschitz continuous function and that

a, b belong to Cb(R). Then equation (17) has a unique solution w ∈ C(R ×

[0,∞)) ∩ C1([0,∞) : D′(R)) in the sense described above. In addition, w ∈

Cb(R × [0, T ]) for every T > 0.

Proof: By the explicit calculation for the linear equation (18), it is clear that -

for solutions with the property stated in the lemma - equation (17) is equivalent

with the integral equation

w(x, t) =
1

2

(

a(x− t) + a(x+ t)
)

+
1

2

∫ x+t

x−t

b(y)dy

+
1

2
H(t− |x|)

∫ t−|x|

0

f(w(0, s))ds.

(19)

For small T , the right hand side of this integral equation defines a contraction

in a ball in Cb(R × [0, T ]) around the solution of the homogeneous linear wave

equation. The time T of existence of the local solution thus constructed depends

only on the size of the initial data and the Lipschitz constant of f , thus the

solution exists globally in time. Uniqueness follows by applying Gronwall’s

lemma to the integral equation satisfied by w(0, t) (see the remark below).

Remark 4. The classical weak solution can be calculated more explicitly. In-

deed, inserting x = 0 in (19) and differentiating with respect to t leads to the

ordinary differential equation

d

dt
w(0, t) =

1

2

(

a′(t) − a′(−t) + b(t) + b(−t) + f(w(0, t))
)

with initial value w(0, 0) = a(0). Knowledge of w(0, t) in turn allows to compute

w(x, t) by means of (19).

Proposition 5. Under the assumptions on a, b and f above, the generalized

solution u ∈ G(R× [0,∞)) to (16) constructed in Prop. 1 is associated with the

solution w ∈ C(R × [0,∞)) to (17) given by Lemma 3.
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Proof: The solution u ∈ G(R × [0,∞)) has a representative which satisfies

∂2
t uε − ∂2

xuε = f(uε)ϕε on R × [0,∞),
uε(·, 0) = aε, ∂tuε(·, 0) = bε on R

where aε = a ∗ ϕε, bε = b ∗ ϕε. Let

v(x, t) =
1

2
H(t− |x|)

∫ t−|x|

0

f(w(0, s))ds

and vε = v ∗ ϕε (convolution in the space variable only), so that

∂2
t v(x, t) − ∂2

xv(x, t) = f(w(0, t))δ(x),
∂2

t vε(x, t) − ∂2
xvε(x, t) = f(w(0, t))ϕε(x)

with vanishing initial data. It is clear from its definition that v is continuous

with compact support in any strip R × [0, T ]. Thus v is uniformly continuous

and

lim
ε→0

‖v − vε‖L∞(R×[0,T ]) = 0.

We have that

(

∂2
t − ∂2

x

)

(uε − vε − w + v) =
(

f(uε) − f(w)
)

ϕε +
(

f(w) − f(w(0, ·))
)

ϕε

with initial data

(uε − vε − w + v)|{t=0} = aε − a, ∂t(uε − vε − w + v)|{t=0} = bε − b.

Consider a region KT with its horizontal slices It as in (10). Estimate (12) gives

‖uε − w‖L∞(It) − ‖vε − v‖L∞(It) ≤ ‖uε − vε − w + v‖L∞(It)

≤
1

2

∫ t

0

‖f ′‖L∞(R)‖uε − w‖L∞(Is)‖ϕε‖L1(Is)ds

+
1

2

∫ t

0

‖
(

f(w(·, s))− f(w(0, s))
)

ϕε‖L1(Is)ds

+ ‖aε − a‖L∞(I0) + T‖bε − b‖L∞(I0).

Now ‖ϕε‖L1(R) = 1, its mass accumulates at {0} as ε → 0 and w is uniformly

continuous on KT . Thus the second to last term on the right hand side goes to

zero, as do the terms involving vε − v and aε − a, bε − b. Applying Gronwall’s

inequality we conclude that

lim
ε→0

‖uε − w‖L∞(It) = 0,
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uniformly for t ∈ [0, T ]. In particular, uε converges to w in the sense of distrib-

utions; this means that u is associated with w.

The result can be generalized to measures as potentials and to more sin-

gular initial data. Associated distributions to the generalized solution of the

semilinear wave equation (2) without potential (g ≡ 1) have been obtained ear-

lier. In case the initial data a, b and the driving term h are distributions with

discrete support, such associated distributions are termed delta-waves. Delta

waves have been shown to exist for bounded or sublinear f in space dimensions

n = 1, 2, 3 e.g. in [26, 29, 35]. In case the driving term is white noise, the

generalized solution to the semilinear (stochastic) wave equation is associated

with the solution of a linear stochastic wave equation in many cases. This has

been shown e.g. in [1, 32, 34]. White noise or positive noise in the initial data

has been considered in [33, 37].

5 Nonlinear regularity theory

Let w ∈ G(R × [0,∞)) be a solution to the linear wave equation (8) with

a, b ∈ G(R), h ∈ G(R × [0,∞)). It is clear from Remark 2 that if a, b and

h are C∞-functions, so is the solution w. However, the C∞-category is not

appropriate to describe propagation of singularities in the setting of Colombeau

algebras. For example, the generalized solution to the linear wave equation with

the square of the Dirac measure ι(δ)2 as initial data is not C∞-regular inside

the light cone (see [31]), but it is G∞-regular there. That the G∞-category

is appropriate for describing propagation of singularities for the linear wave

equation in any space dimension has been shown in [30].

Remark 6. A global G∞-regularity result for the linear wave equation is easy to

prove. In fact, let w ∈ G(R× [0,∞)) be the solution to the linear wave equation

(8) with G∞-regular data a, b ∈ G∞(R), h ∈ G∞(R × [0,∞)). Then w belongs

to G∞(R × [0,∞)) as well. Indeed, estimate (11) applied to representatives

shows that the representative wε of the solution inherits the order of growth in ε
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from the representatives aε, bε, hε. But the higher order derivatives of wε satisfy

again the linear wave equation with correspondingly differentiated data. Since

all derivatives of the data aε, bε, hε have the same order of growth in ε, so do the

derivatives of wε, that is, w satisfies (7) and so it belongs to G∞(R × [0,∞)).

The situation is different in the nonlinear case. To be sure, G∞(R) is not

invariant under superposition with arbitrary nonlinear functions. For example,

the net defined by χε(x) = x

ε
belongs to E∞

M (R), but sin x

ε
or cos x

ε
do not. An

alternative is offered by the subalgebra of G∞(Ω) of elements of total slow scale

type, introduced at the end Section 1.

Lemma 7. Let Ω be an open subset of R
n, u ∈ G(Ω) of total slow scale type

and f a smooth function all whose derivatives grow at most polynomially. Then

f(u) is of total slow scale type.

Proof: Take a representative (uε)ε∈(0,1]. Then

(

‖∂αuε‖L∞(K)

)p
= O(ε−1)

for every K b Ω, α ∈ N
n
0 and every p ≥ 0. The polynomial bounds on f lead

to the estimates

|f(uε)|
p ≤ C0

(

1 + |uε|
m0

)p
, |∂i(f(uε))|

p ≤ Ci

(

(1 + |uε|
mi)|∂iuε|

)p
,

and so on. This shows that all positive powers of all derivatives of f(uε) are of

order O(ε−1) on K.

We now turn the semilinear wave equation (2) and show that total slow

scale regularity of the data is inherited by the solution. The assumptions on

the function f are again the same as in Section 3.

Proposition 8. Let u ∈ G(R × [0,∞)) be the solution to the semilinear wave

equation (2) given in Prop. 1. Assume that the initial data a, b, the potential g

and the driving term h are of total slow scale type and that g is of local L1-type.

Then u is of total slow scale type.
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Proof: Let KT be a region as in the proof of Prop. 1. It follows from the esti-

mates (14) and (15) and Gronwall’s inequality that ‖uε‖L∞(KT ) can be bounded

by a linear combination of ‖aε‖L∞(I0), ‖bε‖L∞(I0) and ‖hε‖L∞(KT ). This shows

that every positive power of ‖uε‖L∞(KT ) is of order O(ε−1). The first and second

derivatives of uε with respect to x satisfy

(

∂2
t − ∂2

x

)

(∂xuε) = f ′(uε)gε∂xuε + f(uε)∂xgε + ∂xhε,
(

∂2
t − ∂2

x

)

(∂2
xuε) = f ′(uε)gε∂

2
xuε + f ′′(uε)gε(∂xuε)

2

+ 2f ′(uε)∂xgε∂xuε + f(uε)∂
2
xgε + ∂2

xhε

with initial data

∂xuε|{t = 0} = ∂xaε, ∂t(∂xuε)|{t = 0} = ∂xbε,
∂2

xuε|{t = 0} = ∂2
xaε, ∂t(∂

2
xuε)|{t = 0} = ∂2

xbε,

respectively. Using the same argument as above, one can estimate ‖∂xuε‖L∞(KT )

in terms of ‖∂xaε‖L∞(I0), ‖∂xbε‖L∞(I0) ‖∂xgε‖L∞(KT ), ‖∂xhε‖L∞(KT ) as well as

by ‖f(uε)‖L∞(KT ), all whose powers are of order O(ε−1) by Lemma 7. The

equation for ∂2
xuε exhibits the same structure, so that a similar estimate holds

for ‖∂2
xuε‖L∞(KT ). ¿From here an inductive procedure yields the result.

Another promising approach to measuring regularity in the nonlinear case is

the Colombeau-Hölder-Zygmund-scale which has been introduced and applied

to nonlinear scalar first order equations in [19].
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