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Abstract

We investigate the asymptotic behavior for t → +∞ of the radius
ρ[u](t) of the spatial uniform analyticity of solutions u(t, x) of the initial
value problem for fractional Burgers’ type equations with source term,
x ∈ Ω, Ω = R or Ω = T := R/(2πZ). Two different estimates are proved:
for x ∈ R and in the periodic case x ∈ T under suitable decay of Lp(Ω)
norms of u when t → +∞. We also exhibit explicit solutions to Burgers’
equation which show that our asymptotic estimates for ρ[u](t) as t → +∞
are sharp in case Ω = R.

1 Introduction

We consider the IVP for inhomogeneous evolution equations of parabolic type

with conservative quadratic term

∂tu + |D|mu + ∂x(u
2/2) = f(t, x), t > 0, x ∈ Ω (1.1)

u|t=0 = u0, (1.2)

where Ω = R or, if we consider 2π periodic data, Ω = T = R/(2πZ), m > 1,

and |D|m = |Dx|m is the (nonlocal if m 6∈ 2N) operator

|D|mw(x) =

∫

R

eixξ|ξ|mŵ(ξ) dξ, dξ := (2π)−1dξ (1.3)
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(respectively,

|D|mw(x) =
1

2π

∑

ξ∈Z

eixξ|ξ|mŵ(ξ)) (1.4)

if Ω = R (respectively, Ω = T). Here

ŵ(ξ) = Fx→ξw =

∫

R

e−ixξw(x) dx

(respectively,

ŵ(ξ) = Fx→ξw =

∫ 2π

0

e−ixξw(x) dx)

stands for the continuous (respectively, discrete) Fourier transform if Ω = R

(respectively, Ω = T). In the periodic case we suppose that u0(x) and f(t, x)

have mean values zero, i.e.,

∫ 2π

0

u0(x) dx = 0, (1.5)

∫ 2π

0

f(t, x) dx = 0, t > 0. (1.6)

The initial data u0 can be singular, e.g., in some Sobolev Lp(Ω) based spaces

or in homogeneous Besov spaces. If m = 2 we recover Burgers’ equation, while

for general m such evolution equations are related to physical models, see [6],

[7], [8], [23] and the references therein.

It is well known (cf. [14], [28], [13], [3], [4], [24], [16], [17], [11], [27], [10] and

the references therein) that, broadly speaking, solutions u(t, x) to semi linear

parabolic equations with analytic nonlinearities become uniformly analytic with

respect to the spatial variables x for t ∈]0, t0[, for some t0 > 0. One is naturally

led to the following definition: given u ∈ C(]0, T [: L1
loc(R)) and t ∈]0, T [, we

define

ρ[u](t) = sup{ρ > 0 : u(t, ·) ∈ O(Ωρ)} (1.7)

with ρ[u](t) := 0 if it cannot be extended to a function in O(Ωρ) for any ρ > 0.

Here

Ωρ = {z ∈ C
n : |Imz| < ρ}, ρ > 0 (1.8)
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while O(Γ) stands for the space of all holomorphic functions in an open set

Γ ⊂ Cn.

We are interested in finding conditions on weak global in time solutions of

(1.1), (1.2) leading to

lim
t→+∞

ρ[u](t) = +∞. (1.9)

The main novelty of the present paper is the thorough analysis of the asymptotic

behavior of ρ[u](t) for t → +∞.

We point out that in general (1.9) does not hold unless we require a priori

decay of ‖u(t, ·)‖Lp as t → +∞ for some p > 1. Indeed, the results on the

uniform analyticity and explicit examples of solitary wave solutions u(t, x) =

v(x + ct), for some c ∈ R (cf. [18], [9], [21], [20], [5]) show that it may happen

that ρ[u](t) = const for t > 0.

On the other hand, the results in [3] on analyticity for self-similar solutions

of Navier-Stokes and Cahn-Hillard type equations in Rn suggest an estimate of

the type ρ[u](t) ≥ ct1/m, t → +∞. Roughly speaking, we will show that under

suitable decay conditions on a solution u and suitable uniform analytic–Gevrey

estimates on the source term f we can always find c > 0 such that

ρ[u](t) ≥ ct1/m, t > 0 (1.10)

In the case of periodic data we are able to improve the estimate for large t,

namely

ρ[u](t) ≥ ct, t ≥ 1 (1.11)

We will present explicit solutions u(t, x) of (1.1) for m = 2, Ω = R (Burg-

ers’ equation) with initial data Dirac delta functions such that (1.10) is sharp.

Moreover, every such u(t, x) extends to a meromorphic function in x ∈ C with

simple poles for every t > 0.

The paper is organized as follows: in Section 1 we define scales of Banach

spaces of Gevrey functions and state the main results. Sections 3 and 4 deal

with the fundamental solution of ∂t+|D|m in the framework of Gevrey spaces for

Ω = R and Ω = T, respectively. The key of the proof, a suitable decomposition
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of the Green function, is given in Section 5. The proofs of the main results

are given in Section 6. We derive sharp estimates for ρ[u](t) for some explicit

solutions to Burgers’ equation in the last section.

2 Gevrey spaces of uniformly analytic func-

tions and statement of the main results

First we introduce Lp(Rn) based Banach spaces of uniformly Gevrey functions

Gσ
un(Rn), σ > 0. Here f ∈ Gσ

un(Rn : Lp(Rn)) means that for some C > 0

sup
α∈Zn

+

(
C |α|

(α!)σ
sup
x∈Rn

|∂α
x f(x)|

)
< +∞, (2.12)

where α! = α1! · · ·αn!, α = (α1, . . . , αn) ∈ Z
n
+. , if σ = 1, we obtain that every

f ∈ G1
un(Rn) is extended to a holomorphic function in {z ∈ Cn; |Im z| < C−1}.

If 0 < σ < 1 we get that Gσ(Rn : Lp) is a subspace of the set of all entire

functions in C of exponential type 1/(1 − σ) (see [26] for more details).

We recall the spaces of time dependent uniformly analytic functions in R

(cf. [3], [4]). Let q ∈ [1, +∞], δ > 0, θ ≥ 0. We define the global in time spatial

Gevrey type Banach space Aθ(δ; Lq(Ω)) as follows

Aθ(δ; Lq(Ω)) = {u ∈ C(]0,∞[: H−∞
q (Ω)) : ‖u‖θ,q;δ < +∞} (2.13)

where

‖u‖θ,q;δ :=
∑

α∈Zn
+

δ|α|

α!
sup
t>0

(
t
|α|
m

+θ‖∂αu(t, ·)‖Lq

)
. (2.14)

Here H−∞
q (Ω) =

⋂
s∈R

Hs
q (Ω) ⊂ C∞(Ω), i.e., H−∞

q (R) is the set of all u ∈
C∞(R) such that ∂α

x u ∈ Lq(R) for all α ∈ Z+ while in the periodic case we

have H−∞
q (T) = C∞(T) ∼= C∞

2π(R). Next, we write S ′(R) (respectively S ′(T) =

D′(T)) for the space of all tempered (respectively periodic) distributions in

R (respectively T) while ‖f‖Lq stands for the Lq(Ω) norm of f . We observe

that if δ = 0, µ = 2, with the convention 00 = 1, Aθ(0; Lq(Ω)) coincides with

the global Kato–Fujita weighted space Cθ(L
q(Ω)) with norm ‖u‖θ,q := ‖u‖θ,q;0,
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used in the study of Navier–Stokes equations and, more generally, semilinear

parabolic equations with singular initial data, e.g., see [1], [3], [4], [25] and the

references therein. We introduce also the (semi)-norm

u θ,q;δ := ‖u‖θ,q;δ − ‖u‖θ,q

=
∑

α∈Zn
+\0

δ|α|

α!
sup
t>0

(
t
|α|
m

+θ‖∂αu(t, ·)‖Lq

)
(2.15)

and the corresponding partial sums

SN [u; θ, q, δ] =
∑

α∈Zn
+\0,|α|≤N

δ|α|

α!
sup
t>0

(
t
|α|
m

+θ‖∂αu(t, ·)‖Lq

)
(2.16)

for all N ∈ N. We note that Aθ(δ; Lq(Ω)) ↪→ Aθ(δ′; Lq(Ω)) provided 0 < δ′ < δ

and if u ∈ Aθ(δ0; L
q(Ω)) for some fixed δ0 > 0 then

u θ,q;δ ≤ δ

δ0
u θ,q;δ0

, 0 < δ ≤ δ0. (2.17)

Next, we denote by S ′
0(T) the space of all 2π periodic distributions with

mean value zero. Let q ∈ [1, +∞], δ > 0, τ > 0. We define the global in time

Lq based spatial Gevrey Banach space Aτ
T
(δ; Lq) as follows

Aτ
T
(δ; Lq) = {u ∈ C(]0,∞[: S ′

0(T)
⋂

(H−∞
q (T)) : ‖u‖exp

τ,q;δ < +∞},(2.18)

where

‖u‖exp
θ,q;δ :=

∑

α∈Zn
+

sup
t>0

(
eτt (δt)

|α|

α!
‖∂αu(t, ·)‖Lq(T)

)
. (2.19)

We introduce also the (semi)-norm

u exp
τ,q;δ := ‖u‖exp

τ,q;δ − ‖u‖exp
τ,q

=
∑

α∈Zn
+\0

sup
t>0

(
eτt (δt)

|α|

α!
‖∂αu(t, ·)‖Lq(T)

)
, (2.20)

where

‖u‖exp
τ,q := ‖u‖exp

τ,q;0 = sup
t>0

(
eτt‖u(t, ·)‖Lq(T)

)
. (2.21)
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Clearly Aτ
T
(δ; Lq) ↪→ Aτ

T
(δ′; Lq) provided 0 < δ′ < δ and if u ∈ Aθ

T
(δ0; L

q) for

some fixed δ0 > 0 then

u exp
τ,q;δ ≤ δ

δ0

u exp
τ,q;δ0

, 0 < δ ≤ δ0. (2.22)

As we will use mainly L2 based Gevrey norms on the torus T, we introduce

simplified notations ‖u‖exp
τ := ‖u‖exp

τ,2 , u exp
τ,δ := u exp

τ,2;δ, and so on.

We will use the partial sums

Sexp
N [u; τ, δ] =

∑

α∈Zn
+\0,|α|≤N

sup
t>0

(
eτt (δt)

|α|

α!
‖∂αu(t, ·)‖

)
, N ∈ N.(2.23)

Sobolev embedding theorems and the Cauchy integral formula for the radius

of convergence of power series imply that if u ∈ Aθ(δ; Lq(Ω)) (respectively,

u ∈ Aθ
T
(δ; Lq)) then u(t, x) is holomorphic in the strip {x ∈ C : |Imx| < δt1/m}

(respectively, {x ∈ C : |Imx| < δt}).
We state the first main result of the paper.

Theorem 2.1 Let 1 < m < 3, 2 ≤ p ≤ +∞, p > 1/(m− 1) and p < 2/(m− 2)

in case m ≥ 2 with the convention p < +∞ if m = 2. Set

θ = θ(m, p) = 1 − 1

m
(1 +

1

p
) (2.24)

Suppose that for some δ0 > 0 the source term

f ∈ A2θ(δ0; L
1(R)). (2.25)

Then if

u ∈ C([0,∞[: S ′(R))
⋂

Cθ(L
p(R)) (2.26)

is a weak solution to (1.1), then there exists δ = δ(m, ‖u‖θ,Lp, ‖f‖2θ,1;δ0) ∈]0, δ0]

such that

u ∈ Aθ(δ; Lp(R)). (2.27)

(2.26) holds if u0 ∈ |D|θm(Lp(R)) =: Ḣ−θm
p (R).

Next, we deal with the periodic case.
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Theorem 2.2 Suppose that for some δ0 > 0, τ0 > 0 the source term

f ∈ Aτ0
T

(δ0 : L1(R)). (2.28)

Then if for some θ0 > 0

u ∈ C([0,∞[: S ′(T))
⋂

CT

θ0,L2 (2.29)

is a weak solution to (1.1), (1.2) then there exist δ = δ(m, ‖u‖exp
θ , ‖f‖exp

τ,1;δ0
) ∈

]0, δ0] and θ > 0, θ < min{τ, θ0} such that

u ∈ Aθ
T
(δ : L2). (2.30)

In particular, (2.29) holds if u0 ∈ Ḣ−θ0m
2 (T).

3 Estimates for the fundamental solution in R

We denote by Em(t, ·) = Em(t, x) the fundamental solution of the operator

∂t + |Dx|m

Em(t, x) =

∫

R

eixξ−t|ξ|m dξ =
1

t1/m
Em(

x

t1/m
) (3.31)

where Em(z) =

∫
eizξ−|ξ|m dξ.

Lemma 3.1 Let σ ≥ 1/m. We have

Em ∈ Gσ
un(R : Lp) (3.32)

for all 1 ≤ p ≤ ∞. In particular, if m ∈ 2N, then Em belongs to the Gelfand–

Shilov space S
1/m
(m−1)/m(R) cf. [15], namely there exist a, b > 0 such that

|∂kf(x)| ≤ ak+1(k!)(m−1)/me−b|x|1/m

, k ∈ Z+, x ∈ R. (3.33)

Proof : We have

|Dα
z Em|∞ ≤

∫

R

|ξ|αe−|ξ|m dξ

=
1

mπ

∫ +∞

0

η(α+1)/m−1e−η dη =
1

mπ
Γ((α + 1)/m), (3.34)
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for all α ∈ Z+, with Γ(z) standing for the Gamma function. The Stirling

formula leads to (3.32) for p = ∞.

In order to derive L1(Rn) estimates we need somewhat more subtle argu-

ments. Let |z| ≥ 1. Suppose that α ∈ N, α ≥ 2. In view of the identity

1

iz
∂z(e

izξ) = eizξ, (3.35)

for z 6= 0, and the fact that ξαe−|ξ|m ∈ C2(R) for α ≥ 2, we can integrate by

parts twice and obtain

Dα
z Em(z) = − 1

z2

∫

R

eizξ∂2
ξ (ξ

αe−|ξ|m) dξ

= − 1

z2

∫

R

eizξQm
α (ξ)e−|ξ|m dξ , (3.36)

where Qm
α (ξ) = αξα−2((α − 1) − 2|ξ|m) + mξα|ξ|m−2(m|ξ|m − (m − 1)). The

integral in (3.36) is convergent near ξ = 0 since Qα(ξ) is bounded by C|ξ|−1+m

for |ξ| ≤ 1 provided α ≥ 1 or α = 0, m > 1. Therefore

|∂α
z Em(z)| ≤ 1

|z|2
4∑

j=1

Lα
j (3.37)

with

Lα
1 =

α(α − 1)

mπ
Γ((α − 1)/m) (3.38)

Lα
2 =

2α

π
Γ((α + m − 1)/m) (3.39)

Lα
3 =

2m

π
Γ((α + 2m − 1)/m) (3.40)

Lα
4 =

2(m − 1)

π
Γ((α + m − 1)/m) . (3.41)

It remains to show that Em ∈ L1(R) if 0 < m ≤ 1. We will use oscillatory

integrals and the Fourier transform of homogeneous distributions (cf. [19]). Let

ϕ ∈ C∞
0 (R), 0 ≤ ϕ(ξ) ≤ 1 for ξ ∈ R; ϕ(ξ) = 1 if |ξ| ≤ 1; supp ϕ ⊂ [−2, 2]. Set

k = k(m) = min{` ∈ N : `m > 1}. (3.42)
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Evidently k > 1 if m ≥ 1. By the Taylor formula we get

e−|ξ|m =

k−1∑

`=0

(−1)`

`!
|ξ|m` + rk

m(ξ)

rk
m(ξ) =

(−1)k

k!
|ξ|mk

∫ 1

0

(1 − t)k−1e−t|ξ|m dt

which yields the following decomposition

Em(z) = E1
m(z) + E2

m(z) +

k−1∑

`=0

H`
m(z) (3.43)

E1
m(z) =

∫

R

eizξ(1 − ϕ(ξ))e−|ξ|m dξ (3.44)

E2
m(z) =

∫

R

eizξϕ(ξ)rk
m(z) dξ (3.45)

H`
m(z) =

(−1)`

`!

∫

R

eizξϕ(ξ)|ξ|` dξ, ` = 1, . . . , k − 1. (3.46)

We can integrate by parts twice in the integrals in the RHS of (3.44) and (3.45)

and obtain that E j
m(z) = O(|z|−2) as z → ∞, for j = 1, 2. The integration

by parts is not possible in the integrals defining H`
m(z) since non integrable

singularities of the type O(|ξ|−1−µ), µ > 0 appear near ξ = 0. We will represent

the convergent integrals in the RHS of H`
m(z) as sums of two oscillatory integrals

(tempered distributions) with singularities at z = 0. We can write

∫

R

eizξϕ(ξ))|ξ|m` dξ =

∫

R

eizξ|ξ|m` dξ +

∫

R

eizξ(1 − ϕ(ξ))|ξ|m` dξ.(3.47)

The first oscillatory integral in the RHS of (3.47) is the inverse Fourier transform

of the homogeneous Schwartz distribution |ξ|m`, and it is homogeneous of order

−1 − m`, hence

∫

R

eizξ|ξ|m` dξ = cm`
± |z|−1−m`, z ∈ R \ 0 (3.48)

for some cm`
± ∈ C, with cm`

± = 0 if m` ∈ 2Z+ since in that case the LHS

equals (modulo a multiplicative constant) the m`–th derivative of the Dirac

delta function (cf. [19]). The outcome of (3.48) is that the LHS belongs to
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L1(|z| ≥ 1) for all ` ∈ Z+, m > 0. As to the second oscillatory integral in the

RHS of (3.48), as (1− ϕ(ξ))|ξ|` is smooth, we can integrate by parts and write
∫

R

eizξ(1 − ϕ(ξ))|ξ|m` dξ =
iN

zN

∫

R

eizξ∂N
ξ

(
(1 − ϕ(ξ))|ξ|m`

)
dξ (3.49)

for all z ∈ R \ 0, N ∈ N. Since

sup
ξ∈R

(1 + |ξ|)N−m`|∂N
ξ

(
(1 − ϕ(ξ))|ξ|m`

)
| =: MN < +∞ (3.50)

if N ≥ [m`] + 2 ([r] standing for the integer part of r) we get by (3.49) that
∣∣∣∣
∫

R

eizξ(1 − ϕ(ξ))|ξ|m` dξ

∣∣∣∣ ≤ CN

|z|N ≤ CN

z2
, |z| ≥ 1 (3.51)

with CN = MN

∫

R

1

(1 + |ξ|)N−m`
dξ < +∞. This yields the validity of the

L1(R) estimates. Standard interpolation arguments conclude the proof of (3.32).

Suppose now that m = 2k, k ∈ N. Then e−|ξ|m = e−ξ2k ∈ S
(m−1)/m
1/m (R) by

properties of the Fourier transform in the Gelfand–Shilov spaces (cf. [15], see

also the direct estimates in [4]). The proof is complete.

2

The next theorem derives Gevrey type estimates for the fundamental solu-

tion Em for all m ≥ 1 which might be of independent interest.

Theorem 3.2 Let m ≥ 1. Then

Em ∈ A
1
m

(1− 1
q
)(δ; Lq) (3.52)

∂Em ∈ A1/m+ 1
m

(1− 1
q
)(δ; Lq) (3.53)

for every q ∈ [1, +∞], and we claim that there exist two positive continuous

bounded functions C(q) and D(q), 1 ≤ r ≤ ∞, such that

‖Em‖1/m(1−1/q,q;δ ≤ C(q)Exp (m−1)/m(C(q)δ), δ ≥ 0; (3.54)

Em 1/m(1−1/q),q;δ ≤ C(q)δExp (m−1)/m(C(q)δ), δ ≥ 0; (3.55)

‖∂Em‖1/m+1/m(1−1/q),q;δ ≤ D(q)Exp (m−1)/m(D(q)δ), δ ≥ 0; (3.56)

∂Em 1/m+1/m(1−1/q),q;δ ≤ D(q)δExp (m−1)/m(D(q)δ), δ ≥ 0, (3.57)
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where

Exp σ(z) :=

∞∑

k=1

zk−1

(k!)σ
, z ∈ R (3.58)

for σ > 0 while

Exp 0(z) :=

∞∑

k=1

zk−1 =
1

1 − z
, |z| < 1. (3.59)

Proof: One observes that

∂kEm = ∂k
xEm(t, x) =

1

tk/m
E (k)

m (
x

t1/m
), t > 0, x ∈ R (3.60)

for all k ∈ Z+. Lemma 3.1 and the Stirling formula imply that there exist

continuous positive functions Cj(p), j = 0, 1, 1 ≤ p ≤ +∞ such that

‖E (k+j)
m ‖Lp(Rn) ≤ (Cj(p))k+1k!1/m, k ∈ N, j = 0, 1. (3.61)

Hence, combining (3.60), (3.61), we get

‖∂jEm‖1/m(1−1/q),q;δ ≤ Cj(q)

∞∑

k=0

(Cj(q)δ)
k

(k!)(m−1)/m
(3.62)

which yields the proof of (3.54) and (3.56) in view of (3.59) and (3.59). Similar

arguments lead to (3.55) and (3.57). The proof is complete.

2

4 Estimates for the fundamental solution in

the periodic case

Let us consider the fundamental solution Eper
m (t, ·) in the case Ω = T. We recall

an expression for Eper
m (t, x) via its Fourier series, namely

Eper
m (t, x) = F−1

ξ→xÊ
T
m(t, ξ) =

1

2π

∑

ξ∈Z

eixξ−t|ξ|m. (4.63)

In view of the mean value conditions (1.5) and (1.6) one introduces

ET

m(t, x) = F−1
ξ→x(Ê

T
m(t, ξ) − 1

2π
) =

1

2π

∑

ξ∈Z\0
eixξ−t|ξ|m. (4.64)
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Clearly

∂kET

m(t, x) =
1

2π

∑

ξ∈Z\0
eixξ−t|ξ|m(iξ)k (4.65)

and the Parseval identity yields

‖∂kET

m(t, ·)‖2 =
∑

ξ∈Z\0
ξ2ke−2t|ξ|m, k ∈ N. (4.66)

We show a discrete analogue to Lemma 3.1.

Lemma 4.1 Let m > 1. Then we can find C0 = C0(m) such that for every

η ∈]0, 1[ we have

‖∂k+j
x Eper

m (t, ·)‖ ≤ Ck+1
0

(1 − η)k+1/2m+j/m
e−ηt(k!)(m−1)/mt−1/2m−j/m−k t > 0, k ∈ Z+

(4.67)

for j = 0, 1.

Proof. We will give the proof for j = 1 (the case j = 0 is easier to deal with).

Since |ξ| ≥ 1 implies tk|ξ|k ≤ tk|ξ|km for all t > 0 we get

‖t3/(2m)+k

k!
∂k+1E(t, ·)‖2 ≤ e−2ηt t

1/m

2π

∑

ξ∈Z\0
e−2t(1−η)|ξ|mt2/m+2kξ2k+2

≤ e−2ηt t
1/m

2π

∑

ξ∈Z\0
e−2t(1−η)|ξ|m(t|ξ|m)2k+2/m

= e−2ηt t1/m

π(2(1 − η))2k+2/m

∞∑

j=1

e−2t(1−η)jm

(2t(1 − η)jm)2k+2/m

≤ e−2ηt t1/m

π(2(1 − η))2k+2/m

× Ψm(2(1 − η)t; 2k + 2/m) (4.68)

where

Ψm(r; `) =
∞∑

j=1

e−rjm

(rjm)` (4.69)

We focus on estimating Ψm(r; `) for r > 0, ` ∈ Z+.

We need an auxiliary assertion.
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Lemma 4.2 Let m > 0, ` ≥ 0, r > 0. Then the function g(z) := zm`e−rzm

admits a unique maximum at z = (`/mr)1/m and

sup
z≥0

g(z) = g((
`

r
)1/m) =

(
`

r

)`

e−` (4.70)

Proof : Straightforward calculations lead to

g′(z) = mzm`−1e−rzm

(` − rzm) , z > 0

and g′(z) > 0 for z ∈]0, ( `
r
)1/m[ and g′(z) < 0 if z ∈]( `

r
)1/m, +∞[. The proof of

the lemma is complete.

2

Next, we apply the lemma and readily obtain

Ψm(r; `) ≤ ``e−`
∑

1≤j≤( `
r
)1/m

1 +
∑

j≥( `
r
)1/m

e−rjm

(rjm)`

≤ r−1/m`(`+1)/me−` +

∫ +∞

0

e−rym

(rym)` dy

= r−1/m

(
`(`+1)/me−`/m +

∫ +∞

0

e−ym

y` dy

)

= r−1/m

(
`(`+1)/me−` +

1

m
Γ(` + 1/m)

)
. (4.71)

Finally, applying (4.71) with r = (2(1 − η)t, ` = 2k + 2/m to (4.68) and

using the Stirling formula, we complete the proof of (4.67).

2

5 Decomposition of the Green function

First we derive Gevrey estimates related to the contribution of the source term

f(t, x) in the case Ω = R. We define the Green function Gm as Gm[f ](t, ·) =∫ t

0

Em(t − s, ·) ∗ f(s, ·)ds.

Lemma 5.1 There exists C > 0 depending only on p and m such that

SN [Gm[f ]; θ, p, δ] ≤ CδExp (m−1)/m(Cδ) ‖f‖2θ,p/2

+ CExp (m−1)/m(Cδ)f 2θ,p/2;δ (5.72)
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for all f ∈ A2θ(δ0; L
p/2), N ∈ N, δ ∈]0, δ0[. In particular, letting N → +∞, we

get

‖[Gm[f ]‖θ,p;δ ≤ CδExp (m−1)/m(Cδ) ‖f‖2θ,p/2

+ CExp (m−1)/m(Cδ)f 2τ,1;δ (5.73)

and

lim
δ→0

‖[Gm[f ]‖θ,p;δ = 0. (5.74)

Proof. We recall the well known property for derivatives of the convolution

∂k(f ∗ g) = ∂k−αf ∗ ∂αg, α = 0, 1, . . . , k.

We have

{Gm[f ]}δ
k(t, x) :=

δktk/m

k!

∫ t

0

∂k(Em(t − s, ·) ∗ f(s, ·)) ds,

=
δktk/m

k!

∫ t

0

∂k−1(∂Em(t − s, ·) ∗ f(s, ·)) ds,

=

∫ t

0

δktk/m

((t − s)1/m + s1/m)ksτ

(
(t − s)k/m

k!
∂kEm(t − s, ·)

)

sτf(s, ·) ds

+

k∑

j=1

∫ t

0

δktk/m

((t − s)1/m + s1/m)ksτ

× (t − s)(k−j)/m

(k − j)!
∂k−jEm(t − s, ·)

∗sτ δjsj/m+τ

j!
∂jf(s, ·) ds (5.75)

Applying first the Young inequality for the Lp(R) norm with 1+1/p = 1/q+2/p,

1/q = 1 − 1/p, then a summation from k = 1 to N in (5.75) and changing the

order of summation we get

SN [G[f ]; θ, p, δ] ≤
(

tθ
∫ t

0

1

(t − s)1/m(1+1/p)s2θ
ds

)
C(p)δ

× Exp (m−1)/m(C(p)δ) ‖f‖2θ,p/2

+

(
tθ

∫ t

0

1

(t − s)1/m(1+1/p)s2θ
ds

)

× Exp (m−1)/m(C(p)δ)f 2θ,p/2;δ (5.76)
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Since the restrictions on p and m in the case Ω = R imply 2θ < 1, 1/m(1+1/p) <

1 we have

tθ
∫ t

0

1

(t − s)1/m(1+1/p)s2θ
ds =

∫ 1

0

1

(1 − s)1/m(1−1/p)s2θ
ds

= B(1 − 1/m(1 + 1/p), 1 − 2θ), (5.77)

B(µ, ν) being the Beta function. The proof of (5.72) is complete.

2

Next, we investigate the source term in the periodic case.

Lemma 5.2 Let θ, τ, η > 0, θ < τ < 1, θ < η < 1. Then there exists C =

C(η, τ, θ) > 0 such that the following estimate holds

Sexp
N [Gper

m [f ]; θ, δ] ≤ C

1 − Cδ
(δ ‖f‖exp

τ,1 + f exp
τ,1;δ) (5.78)

for all N ∈ N, f ∈ Aτ
T
(δ0), δ ∈]0, δ0], δ < C−1. In particular, letting N → +∞,

we obtain

Gper
m [f ] exp

θ,δ ≤ C

1 − Cδ
(δ ‖f‖exp

τ,1 + f exp
τ,1;δ) (5.79)

and

lim
δ→0

Gper
m [f ] exp

θ,δ = 0. (5.80)

Proof. We have

{G[f ]}δ
k(t, x) :=

δktk

k!

∫ t

0

∂k(Em(t − s, ·) ∗ f(s, ·)) ds,

=
k∑

j=0

∫ t

0

δk−j(t − s)k−j

(k − j)!
∂k−jET

m(t − s, ·)

∗δjsj

j!
∂jf(s, ·) ds. (5.81)
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Choosing η ∈]θ, 1[ and applying (4.67) for j = 0 we get

‖eθt{G[f ]}δ
k(t, ·)‖ ≤

k∑

j=0

∫ t

0

e−(η−θ)(t−s)e−(τ−θ)s Ck−j+1δk−j

(1 − η)k−j+1/(2m)

× ‖eτs δjsj

j!
∂jf(s, ·))‖L1 ds (5.82)

≤ Bm(η − θ, τ − θ)
k∑

j=0

Ck−j+1δk−j

(1 − η)k−j+1/(2m)

× sup
s>0

(
‖eτs δ

jsj

j!
∂jf(s, ·))‖L1

)
(5.83)

where

Bm(µ, ν) = sup
t>0

(∫ t

0

e−µ(t−s)e−νs

(t − s)3/2m)

)
< +∞.

Then we conclude as in the previous lemma

2

Similarly to the arguments in Lemma 5.2 (applied for the L2 norm) we get

Sθ
N [G[f ]; δ] ≤ Bm(η − θ, τ − θ)

Cδ

1 − η − Cδ
‖f‖exp

τ,1

+ Bm(θ, τ)
C

1 − η − Cδ
f exp

τ,1;δ. (5.84)

The proof of the lemma is complete.

2

The next assertion is the first crucial step in deriving the analytic–Gevrey

estimates for large t.

Lemma 5.3 Let δ > 0, k ∈ N, ε ∈]0, 1[. Then

δktk/m

k!
∂k

x(Gm[uux](t, x)) = N ε;δ,t
k [u](t, x) + Rε;δ,t

k [u](t, x), (5.85)
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where

N ε;δ,t
k [u](t, x) =

∫ (1−ε)t

0

∫

R

δktk/m

k!(t − s)(k+1)/m

× E (k+1)
m (

x − y

(t − s)1/m
)u2(s, y) dyds, (5.86)

Rε;δ
k [u](t, x) = Rε;δ

k,0[u] + Pε;δ
k [u](t, x) + Qε;δ

k [u](t, x), (5.87)

Rε;δ
k,0[u](t, x) =

∫ t

(1−ε)t

∫

R

(
t1/m

(t − s)1/m + s1/m

)k
δk

k!(t − s)1)/m

× E (k+1)
m (

x − y

(t − s)1/m
)u2(s, y) dyds, (5.88)

Pε;δ
k [u](t, x) =

k∑

α=1

∫ t

(1−ε)t

∫

R

(
t1/m

(t − s)1/m + s1/m

)k
δk−α

(k − α)!(t − s)1)/m

× E (k−α+1)
m (

x − y

(t − s)1/m
)u(s, y)

δαsα/m

α!
∂α

y u(s, y) dyds, (5.89)

Qε;δ
k [u](t, x) =

k∑

α=2

∫ t

(1−ε)t

∫

R

(
t1/m

(t − s)1/m + s1/m

)k
δk−α

(k − α)!(t − s)1)/m

× E (k−α+1)
m (

x − y

(t − s)1/m
)

α−1∑

α1=1

δα1sα1/m

α1!
∂α1

y u(s, y)

× δα−α1s(α−α1)/m

(α − α1)!
∂α−α1

y u(s, y) dyds, (5.90)

with the convention Qε;δ
k [u] = 0 if k = 1.

Proof : We have

{F [u]}δ
k(t, x) :=

δktk/m

k!
∂k

x(GP [uux](t, x))

= {F [u]}δ;1
k (t, x) + {F [u]}δ

k;2(t, x), (5.91)

where

{F [u]}δ;1
k (t, x) :=

δktk/m

k!

∫ (1−ε)t

0

∫

R

∂k+1
x Em(t − s, x − y)u2(s, y) dyds

=

∫ (1−ε)t

0

∫

R

δktk/m

k!(t − s)(k+1)/m
E (k+1)

m (
x − y

(t − s)1/m
)u2(s, y) dyds

= Rε;δ,t
k [u](t, x) (5.92)
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and

{F [u]}δ;2
k (t, x) =

k∑

α=0

∫ t

(1−ε)t

∫

R

(
t1/m

(t − s)1/m + s1/m

)k
δk−α

(k − α)!(t − s)1)/m

× E (k−α+1)
m (

x − y

(t − s)1/m
)
δαsα/m

α!
∂α

y (u2(s, y)) dy ds. (5.93)

The Leibnitz rule leads to

1

α!
∂α

x (u2) = 2u
1

α!
∂α

x u +

α−1∑

j=1

1

j!
∂ju

1

(α − j)!
∂α−j

x u (5.94)

for α ≥ 2. Combining (5.93) and (5.94), we get (5.87), (5.89), and (5.90).

2

We define C∞
θ (Lp) as the set of all Cθ(L

p) such that

sup
t>0

(
t

α
m

+θ‖∂αu(t, ·)‖Lp

)
< +∞, α ∈ Z+. (5.95)

The next assertion plays a crucial role in the proof of global in time uniform

spatial analytic regularity of solutions to the IVP for Ω = R.

Proposition 5.4 Let u ∈ C∞
θ (Lp), p ≥ 2, q = p/(p − 1). Then

SN [Gm[uux], θ, p, δ] ≤ C2(q)δε−1Exp m(C(q)δε−1)‖u‖2
θ,p

×
∫ 1−ε

0

1

(1 − s)1/m(1+1/p)s2θ
ds

+ C2(q)
δ

1 − ε
Exp m(C(q)

δ

1 − ε
)u 2

θ,p;δ

×
∫ 1

1−ε

1

(1 − s)1/(mp)s2θ
ds

+

(
C(q)‖u‖θ,Lp

∫ 1

(1−ε)

1

(t − s)1/m(1+1/p)s2θ
ds

)

Sδ
N [u; θ, Lp]

+

(
C2(q)δExp m(C(q)δ)

∫ 1

(1−ε)

1

(1 − s)1/m(1+1/p)s2θ
ds

)

× (Sδ
N−1[u; δ, θ, Lp])2 (5.96)
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for all ε ∈ [0, 1[, N ∈ N, δ > 0. In particular, we can find ε0 ∈]0, 1[, such that

κε := C2(q)‖u‖θ,Lp

∫ 1

(1−ε)

1

(t − s)1/(mp)s2θ
ds ≤ 1/2, ε ∈ [0, ε0]. (5.97)

Proof : First, we observe that u ∈ C∞
θ (Lp) iff SN [u; θ, p, δ] < +∞ for all

δ > 0, n ∈ N . Next, we estimate the Lp norm of the LHS by the Lp norms of

(5.86), (5.88), (5.89), (5.90). The summation from k = 1 to N and standard

combinatorial arguments lead to proof of (5.96).

2

In the periodic case we do not need the decomposition of Gm[uux] in view

of the exponential decay property. We have

Proposition 5.5 Let η ∈]0, 1[, θ ∈]0, η[. Then there exists C0 > 0 such that

Sexp
N [Gm[uux]; θ, δ] ≤ C0δ

1 − C0δ
M(Sexp

N−1[u; θ, δ])2 (5.98)

for all δ ∈]0, C−1
0 [, N ∈ N, where

M = sup
t>0

(∫ t

0

e−(η−θ)(t−s)

(t − s)3/(2m)
e−θs ds

)
< +∞. (5.99)

Proof : We derive (5.98) and (5.99) by straightforward estimates of the L2(T)

norm of the LHS by (5.86) for Ω = T, taking into account that 0 < θ < η < 1.

2

6 Proof of the main results

The estimates in section 5 allow us to propose simultaneous proofs of the two

main theorems.

We reduce in a standard way the IVP to the integral equation

u = U0(t, x) + Gm[uux], (6.100)
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where

U0(t, x) = Em(t, ·) ∗ u0(x) + Gm[f ](t, x). (6.101)

Let Ω = R. We fix ε ∈]0, ε0[ satisfying (5.97). Then in view of (6.100), the local

in time regularity in x and (5.96) combined with bootstrap type arguments lead

to the existence of C > 0 such that

SN [u; θ, p, δ] ≤ C

1 − κε

U0
θ,p;δ + Cδu 2

θ,p;δ

+ C(SN−1[u; θ, p, δ])2 (6.102)

for all N ∈ N, 0 < δ ≤ 1 with the convention

S0[u; θ, p, δ] = U0
θ,p,δ + Cδu 2

θ,p;δ. (6.103)

Similarly, if Ω = T we obtain, using Proposition 5.5, that one can find C > 0

such that

Sexp
N [u; θ, δ] ≤ U0 exp

θ,δ + C(Sexp
N−1[u; θ, δ])2 (6.104)

for N ∈ N, δ > 0, where

Sexp
0 [u; θ, δ] = U0 exp

θ,δ . (6.105)

We have the freedom to choose δ > 0 small enough and we observe that for

0 < δ � 1 the Picard type iteration inequalities (6.102) (respectively, (6.105))

imply that

sup
N∈N

SN [u; θ, p, δ] = u θ,p,δ < +∞ (6.106)

(respectively,

sup
N∈N

Sexp
N [u; θ, δ] = u exp

θ,δ < +∞). (6.107)

Therefore Theorem 2.1 (respectively, Theorem 2.2) is proved.

2
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Remark 6.1 We can show global in time estimates on ρ[u](t) for solutions to

some evolution equations with conservative terms but with non homogeneous

dissipative parts, like generalizations of Kuramoto–Sivashinski equations (see

[2], [4] and the references therein). However the validity of (1.9) remains an

open problem for such equations.

7 Sharp estimates on the radius of the analyt-

icity for Burgers’ equation

The aim of this section is to investigate the spatial analyticity of some explicit

solutions to Burgers’ equation. We recall that by the Hopf-Cole formula the

solution to the IVP

∂tu + ∂x(u
2/2) − uxx = 0, x ∈ R, t > 0

u(0, x) = u0(x), x ∈ R (7.108)

is given by

u(t, x) = −2∂x(ln v(t, x)) = −2
∂xv(t, x)

v(t, x)
, t > 0, x ∈ R (7.109)

v(t, x) =
1

2
√

πt

∫

R

e−
(x−y)2

4t v(y) dy, t > 0, x ∈ R (7.110)

where

v0(y) = eU0(y), U ′
0(y) = u0(y) (7.111)

satisfying U0(y) = o(y2) as y → ∞. We recall the well known fact that in that

case v(t, x) = et∆v0 extends to an entire function in x ∈ C for positive times.

Hence, the question of the radius of the analyticity ρ(t) is reduced to the study

of the zero(s) of the entire function v(t, x), x ∈ C for t > 0, namely

ρ(t) = min{|Imz(t)|; z ∈ C, v(t, z) = 0}, t > 0. (7.112)

.
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We choose u0 to be a multiple of the Dirac function massed at the origin, i.e.,

u0 = cδ(x), c ∈ R \ 0. (7.113)

We introduce the function

D(z) =
1

π

∫ +∞

z

e−y2

dy, z ∈ R. (7.114)

Straightforward arguments imply that D(z) is an entire function in C, 0 <

D(ξ) < 1, ξ ∈ R, and for every µ ∈] −∞,−1[
⋂

]0, +∞[ one can find σ = σ(µ)

such that

D(z) + µ 6= 0, z ∈ C, |Imz| < σ. (7.115)

We have

Proposition 7.1 Let u(t, x) be the solution of the IVP (7.108) for Burgers’

equation defined by (7.109) with initial data u0 given by (7.113). Then there

exists at most one exceptional value c0 ∈ R, c0 6= 0, such that the entire function

D(z) + (ec0 − 1)−1 6= 0, z ∈ C, i.e., the set Nc of all z ∈ C satisfying D(z) +

(ec − 1)−1 = 0 is empty iff c = c0. Moreover, u(t, x) extends to a holomorphic

function in the strip |Imx| < 2dc

√
πt provided Nc 6= ∅, where

dc = inf{|Imz|; z ∈ Nc}. (7.116)

We note that dc > 0 because of (7.115). Finally, if Nc 6= ∅ and t > 0, the

function u(t, x) extends as a meromorphic function with single poles at x =

2κc

√
πt, κc ∈ Nc.

Proof. We choose as a primitive function U 0(y) = cH(y), where H(y) stands

for the Heaviside function. Then we have

v(t, x) =
1

2
√

πt

∫

R

e−
(x−y)2

4t ecH(y) dy

=
1

2
√

πt

∫ 0

−∞
e−

(x−y)2

4t dy

+ ec 1

2
√

πt

∫ +∞

0

e−
(x−y)2

4t dy (7.117)
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Combining (7.117) with the definition of D(z) we rewrite v as follows:

v(t, x) = 1 + (ec − 1)
1√
π

∫ +∞

−x/(2
√

πt)

e−y2

dy

= 1 + (ec − 1)D(− x

2
√

πt
) (7.118)

when c ∈ R, c 6= 0. Thus v(t, x) = 0 for t > 0, x ∈ C iff

D(− x

2
√

πt
) + (ec − 1)−1 = 0. (7.119)

Since D(z) is not a polynomial the existence of at most one c0 follows from

the great Picard theorem in complex analysis (e.g., cf. [22]). We note that

(ec − 1)−1 > 0 if c > 0 while (ec − 1)−1 < −1 when c < 0. In view of (7.115),

(7.118), (7.119), (7.111) and the definition of dc the proof is complete.

2

Remark 7.2 One can investigate the spatial analyticity of particular family

of weak solutions (used in [12] for non–uniqueness in H s(R), s < −1/2) and

obtain somewhat surprising different from (1.10) asymptotic behavior of ρ[u](t)

for t → +∞. More precisely, let

uc(t, x) = −2∂x ln(1 + vc(t, x)) = −2
∂xvc(t, x)

1 + vc(t, x)
, t > 0, x ∈ R

vσ(t, x) =
σ

2
√

πt
e−

x2

4t , t > 0, x ∈ R

where c is a positive constant. For each c > 0 the function uc solves Burgers’

equation for t > 0, u ∈ C([0, +∞[: H−1/2−ε(R)), ε > 0 and u(0, ·) = 0 in a

weak sense cf. [12]. Then we can prove that

lim
t→+∞

ρ[uc](t)√
t ln t

= ρc > 0 (7.120)

Acknowledgements. The author thanks the unknown referee for the useful
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Università di Cagliari

via Ospedale 72, 09124 Cagliari, Italy

E-mail: todor@unica.it


